
a
o

DOI: 10.1515/ms-2017-0047

Math. Slovaca 67 (2017), No. 5, 1263–1268

ON THE BETTI NUMBERS OF ORIENTED GRASSMANNIANS

AND INDEPENDENT SEMI-INVARIANTS OF BINARY FORMS
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ABSTRACT. We present a complete functional formula expressing the ith Z2-Betti number of the
oriented Grassmann manifold of oriented 3-dimensional vector subspaces in Euclidean n-space for i
from the range determined by the characteristic rank of the canonical oriented 3-dimensional vector
bundle over this manifold. The same formula explicitly exhibits the number of linearly independent
semi-invariants of degree 3 of a binary form of degree n − 3. Using the approach and data presented
in this note, analogous results can be obtained for the oriented Grassmann manifold of oriented 4-di-
mensional vector subspaces in Euclidean n-space and semi-invariants of degree 4 of a binary form of
degree n− 4.
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1. Introduction and some preliminaries

The Z2-Betti numbers bj(G̃n,k) of the oriented Grassmann manifolds G̃n,k of oriented k-dimen-
sional vector subspaces in Rn are known for k = 1 (spheres) and k = 2 (complex quadrics); but
they are in general unknown for k ≥ 3. We note that, in contrast to this, the rational Betti

numbers of G̃n,k are known (thanks to the rational Poincaré polynomial [4: p. 494–495]). In what
follows, the cohomology will be taken with coefficients in Z2; in particular, by the Betti numbers
we shall always mean the Z2-Betti numbers.

The manifold G̃n,k is a double covering space for the Grassmann manifold Gn,k of all

k-dimensional vector subspaces in Rn; the covering p : G̃n,k → Gn,k is universal if (n, k) 6= (2, 1).

In view of the obvious diffeomorphisms Gn,k ∼= Gn,n−k, G̃n,k ∼= G̃n,n−k, we may assume that
k ≤ n− k.

Recall ([2]) that the cohomology algebra H∗(Gn,k) of the Grassmann manifold Gn,k is generated
by the Stiefel-Whitney characteristic classes wi(γn,k) ∈ Hi(Gn,k) of the canonical k-dimensional
vector bundle γn,k over Gn,k. An exact description of the algebra H∗(Gn,k) is known ([2]) but,
for our purposes, it suffices to note that there are no polynomial relations among the generators
wi(γn,k) in degrees ≤ n− k. For each j, the Betti number bj(Gn,k) is the same as the number of
j-dimensional Schubert cells in Gn,k, that is ([9: §6]), the number p(n− k, k, j) of restricted parti-
tions of j into at most k parts, each less than or equal to n−k; note that p(n−k, k, j) = p(k, n−k, j).
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The Betti number bj(Gn,k) is the coefficient at xj in the Poincaré polynomial ([2])

Px(Gn,k) =
(1− xn−k+1)(1− xn−k+2) · · · (1− xn)

(1− x)(1− x2)(1− x3) · · · (1− xk)
. (1.1)

As a basis for Hj(Gn,k) ([5: Theorem, p. 232]), we can take the set{
wa11 · · ·w

ak
k ;

k∑
i=1

iai = j,

k∑
i=1

ai ≤ n− k
}
, (1.2)

where wi is an abbreviation for the Stiefel-Whitney class wi(γn,k). The set (1.2) will be called the
standard basis for Hj(Gn,k).

About the cohomology algebra H∗(G̃n,k) of the oriented Grassmann manifold G̃n,k very little
is known in general (see [13]). But it is clear that the pullback p∗(γn,k) of the canonical k-plane

bundle γn,k over Gn,k is the canonical oriented k-plane bundle γ̃n,k over G̃n,k, and that

Im(p∗ : H∗(Gn,k) −→ H∗(G̃n,k)),

multiplicatively generated by the Stiefel-Whitney classes

wi(γ̃n,k) = p∗(wi(γn,k)),

is a self-annihilating subspace, of half the dimension (in general unknown up to now), in the

cohomology algebra H∗(G̃n,k). Thus there exists a positive integer κ (κ ≤ k(n− k) = dim(G̃n,k))
such that there is some element other than a polynomial in the Stiefel-Whitney classes of γ̃n,k in

the cohomomology group Hκ+1(G̃n,k), while all the elements in Hj(G̃n,k) for nonnegative integers
j ≤ κ can be expressed as polynomials in the Stiefel-Whitney classes of γ̃n,k. The number κ is
called the characteristic rank of γ̃n,k, denoted charrank(γ̃n,k); for this terminology and further
information on the characteristic rank of vector bundles and manifolds see for instance [6], [8], [10],
[1], [7]. Now there are various ways (among them a simple analysis of the Gysin exact sequence [9:
Corollary 12.3] associated with the double covering p) to verify that, for l + 1 ≤ charrank(γ̃n,k),
one has

bl+1(G̃n,k) = bl+1(Gn,k)− bl(Gn,k); (1.3)

the later difference clearly equals the coefficient at xl+1 in (1 − x)Px(Gn,k) (see 1.1). Thanks to

Poincaré duality, if we calculate the Betti numbers bl+1(G̃n,k) for l + 1 ≤ k(n−k)
2 , then we also

have the remaining Betti numbers. We thus confine our attention to those differences bl+1(Gn,k)−
bl(Gn,k), denoted N(n− k, k, l + 1) in the sequel, such that

l + 1 ≤ k(n− k)

2
. (1.4)

Thus, for

l + 1 ≤ min
{

charrank(γ̃n,k),
k(n− k)

2

}
,

the numbers N(n − k, k, l + 1) are the Betti numbers of the oriented Grassmann manifold G̃n,k.
But additionally, by Cayley - Sylvester’s theorem, N(n− k, k, l+ 1) is also equal to the number of
linearly independent semi-invariants of degree k and weight l+ 1 of a binary form of degree n− k
(see for example [11], [12: Satz 2.21]).

Recently, the characteristic rank of γ̃n,3 has been found for infinitely many values of n. For
instance, the following was proved in [7]: for n ≥ 6, taking c to be the only integer such that
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2c−1 < n ≤ 2c, we have

charrank(γ̃n,3)

 = n− 2 if n = 2c,
= n− 5 + i if n = 2c − i, i ∈ {1, 2, 3},
≥ n− 2 otherwise.

(1.5)

By (1.5), for example, if l + 1 ≤ 2c − 2, then each Betti number bl+1(G̃2c,3) equals the number
N(2c − 3, 3, l + 1).

As the main result, this note presents a complete functional formula for N(n− 3, 3, l + 1): the
result is given in Theorem 2.2, by Table 1. Via our formula, one gains new, global insight into

the ith Betti numbers of G̃n,3 for i ≤ min{charrank(γ̃n,3), 3(n−3)2 }. The same formula explicitly
exhibits the number of linearly independent semi-invariants of degree 3 of a binary form of degree
n − 3. In particular, Bundy and Hart’s [3: Theorem 3.1(b)] is immediately obtained from our
formula; see Remark 3.

In order to keep the present note within reasonable size, we confine ourselves to noting that, using
the approach and data presented in this note, analogous results (extending [3: Theorem 3.1(c)])
can be obtained for the oriented Grassmann manifold of oriented 4-dimensional vector subspaces in
Euclidean n-space and linearly independent semi-invariants of degree 4 of a binary form of degree
n−4. We add that the situation for N(n−2, 2, l+1) is very simple; we shall see, in Lemma 2.1, that
N(n − 2, 2, l + 1) = 0 if l is even, and N(n − 2, 2, l + 1) = 1 if l is odd; Lemma 2.1 implies [3:
Theorem 3.1(a)].

2. Additional preliminaries and the main result

We first give a recursive formula for the Betti numbers of the Grassmann manifold Gn,k. As
starting data, one has that the ith Betti number of the real (n − 1)-dimensional projective space
Gn,1 is equal to 1 for i = 0, 1, . . . , n− 1 and, of course, it vanishes for all other values of i.

Proposition 2.1. For the Betti numbers of the Grassmann manifold Gn,k (2 ≤ k ≤ n − k), we
have the following recursion:

bl(Gn,k) =
∑

0≤i≤ l
k

bl−ik(Gn−1−i,k−1).

P r o o f. The standard basis for H l(Gn,k) is the union of pairwise disjoint subsets

Pi =
{
wa11 · · ·w

ak−1

k−1 w
i
k;

k−1∑
j=1

jaj + ik = l,

k−1∑
j=1

aj + i ≤ n− k
}
,

where i = 0, 1, . . . , b lk c. But the elements of the set Pi are in an obvious bijective correspondence

with the elements of the standard basis for H l−ik(Gn−1−i,k−1). Thus the cardinality of Pi is the
Betti number bl−ik(Gn−1−i,k−1), and the proposition is proved. �

As an immediate application of the recursive formula from Proposition 2.1, we obtain the fol-
lowing.

Lemma 2.1. Let n ≥ 4.

(a) If 0 ≤ l ≤ n− 2, then we have that N(n− 2, 2, l) = bl(Gn,2)− bl−1(Gn,2) is equal to 0 if l is
odd, and is equal to 1 if l is even.

(b) If n − 2 < l ≤ 2(n − 2), then we have that bl(Gn,2) − bl−1(Gn,2) is equal to −1 if l is odd,
and is equal to 0 if l is even.
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Table 1. A complete formula for N(n− 3, 3, l + 1)

j\x 0 1 2 3

0
δ − 1(≥1) if ε≥0;

2t otherwise

δ(≥0) if ε≥1;

2t otherwise

δ(≥0) if ε≥1;

2t otherwise

δ + 1(≥1) if ε≥2;

2t otherwise

1
δ(≥2) if ε≥0;

2t+ 1 otherwise

δ(≥2) if ε≥0;

2t+ 1 otherwise

δ + 1(≥1) if ε≥1;

2t+ 1 otherwise

δ + 1(≥1) if ε≥1;

2t+ 1 otherwise

2
δ − 1(≥1) if ε≥−1;

2t+ 1 otherwise

δ(≥2) if ε≥0;

2t+ 1 otherwise

δ(≥0) if ε≥0;

2t+ 1 otherwise

δ + 1(≥1) if ε≥1;

2t+ 1 otherwise

3
δ − 1(≥1) if ε≥−1;

2t+ 1 otherwise

δ − 1(≥1) if ε≥−1;

2t+ 1 otherwise

δ(≥2) if ε≥0;

2t+ 1 otherwise

δ(≥0) if ε≥0;

2t+ 1 otherwise

4
δ − 2(≥0) if ε≥−2;

2t+ 1 otherwise

δ − 1(≥1) if ε≥−1;

2t+ 1 otherwise

δ − 1(≥1) if ε≥−1;

2t+ 1 otherwise

δ(≥2) if ε≥0;

2t+ 1 otherwise

5
δ − 1(≥1) if ε≥−2;

2t+ 2 otherwise

δ − 1(≥1) if ε≥−2;

2t+ 2 otherwise

δ(≥2) if ε≥−1;

2t+ 2 otherwise

δ(≥2) if ε≥−1;

2t+ 2 otherwise

6
δ − 3(≥1) if ε≥−3;

2t+ 1 otherwise

δ − 2(≥0) if ε≥−2;

2t+ 1 otherwise

δ − 2(≥0) if ε≥−2;

2t+ 1 otherwise

δ − 1(≥1) if ε≥−1;

2t+ 1 otherwise

7
δ − 2(≥2) if ε≥−3;

2t+ 2 otherwise

δ − 2(≥2) if ε≥−3;

2t+ 2 otherwise

δ − 1(≥1) if ε≥−2;

2t+ 2 otherwise

δ − 1(≥1) if ε≥−2;

2t+ 2 otherwise

8
δ − 3(≥1) if ε≥−4;

2t+ 2 otherwise

δ − 2(≥2) if ε≥−3;

2t+ 2 otherwise

δ − 2(≥0) if ε≥−3;

2t+ 2 otherwise

δ − 1(≥1) if ε≥−2;

2t+ 2 otherwise

9
δ − 3(≥1) if ε≥−4;

2t+ 2 otherwise

δ − 3(≥1) if ε≥−4;

2t+ 2 otherwise

δ − 2(≥2) if ε≥−3;

2t+ 2 otherwise

δ − 2(≥0) if ε≥−3;

2t+ 2 otherwise

10
δ − 4(≥0) if ε≥−5;

2t+ 2 otherwise

δ − 3(≥1) if ε≥−4;

2t+ 2 otherwise

δ − 3(≥1) if ε≥−4;

2t+ 2 otherwise

δ − 2(≥2) if ε≥−3;

2t+ 2 otherwise

11
δ − 3(≥1) if ε≥−5;

2t+ 3 otherwise

δ − 3(≥1) if ε≥−5;

2t+ 3 otherwise

δ − 2(≥2) if ε≥−4;

2t+ 3 otherwise

δ − 2(≥2) if ε≥−4;

2t+ 3 otherwise

P r o o f. Part (a). By Proposition 2.1, we have that

N(n− 2, 2, l) =
∑

0≤i≤ l
2

bl−2i(Gn−1−i,1)−
∑

0≤i≤ l−1
2

bl−1−2i(Gn−1−i,1) =
∑

0≤i≤ l
2

1i −
∑

0≤i≤ l−1
2

1i,

where 1i = 1 for all i. This proves Part (a).

Part (b). By Poincaré duality, we have

bl(Gn,2)−bl−1(Gn,2)=b2(n−2)−l(Gn,2)−b2(n−2)−l+1(Gn,2)=−(b2(n−2)−l+1(Gn,2)−b2(n−2)−l(Gn,2)).

By applying Part (a), we obtain the result. The lemma is proved. �

Remark 1. We note that Lemma 2.1(a) obviously implies [3: Theorem 3.1(a)].

The following is the main result of the present note: a complete functional formula expressing
the number N(n− 3, 3, l + 1).

Theorem 2.2. Let l = 12t + j with j = 0, 1, 2, . . . , 11 and n − 3 = 4s + x with x = 0, 1, 2, 3,
where s ≥ 1 if x = 0, 1, 2 and s ≥ 0 if x = 3. For typographical reasons, we abbreviate δ := 2s− 4t
and ε := 6t− 2s. By the definition of N(n− 3, 3, l + 1), we suppose (see (1.4)) that δ ≥ 2j−3x+2

6 .
Then Table 1 presents a complete functional formula for the number N(n− 3, 3, l + 1) (n ≥ 6).
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Remark 2. For reasons of space we write the data in Table 1 in a somewhat condensed way.

For instance,
δ − 1(≥1) if ε≥0;

2t otherwise
appearing in the upper left-hand corner is to be read: for j = 0 and

x = 0, we have N(n−3, 3, l+ 1) = δ−1 (which is ≥ 1) if ε ≥ 0, and we have N(n−3, 3, l+ 1) = 2t
if ε < 0.

P r o o f. By Proposition 2.1, we have that

N(n− 3, 3, l + 1) = b12t+j+1(G4s+x+3,3)− b12t+j(G4s+x+3,3)

is equal to
b4t+ j+1

3 c∑
i=0

b12t+j+1−3i(G4s+x+2−i,2)−
b4t+ j

3 c∑
i=0

b12t+j−3i(G4s+x+2−i,2). (2.1)

Now it suffices to apply Lemma 2.1. To illustrate this, we present two cases in detail.

Case j = 0, x = 0. By the definition of the number N(n − 3, 3, l + 1), our assumption now is

that δ ≥ 1
3 , that is (note that δ is always even), δ ≥ 2. By (2.1), we see that N(n − 3, 3, l + 1) is

equal to
4t∑
i=0

b12t+1−3i(G4s+2−i,2)− b12t−3i(G4s+2−i,2).

To apply Lemma 2.1, we need to know for which i one has 12t+ 1− 3i ≤ 4s− i. Of course, this is
the case precisely for i ≥ 6t− 2s+ 1, that is, i ≥ ε+ 1. Thus Lemma 2.1 implies that

N(n− 3, 3, l + 1) =
∑

0≤ even i≤ε

(−1)i +
∑

ε+1≤ non-negative odd i≤4t

(+1)i;

the right-hand side is equal to (−1)(3t− s+ 1) + (+1)(s− t) = 2s− 4t− 1 = δ − 1 (which is ≥ 1)
if ε ≥ 0, and is equal to 2t if ε < 0 (of course, we understand that (−1)i = −1 and (+1)i = 1 for
all i). This proves the claim for j = 0, x = 0.

Case j = 2, x = 1. By the definition of N(n− 3, 3, l+ 1), our assumption now is that δ ≥ 2. By
(2.1), we see that N(n− 3, 3, l + 1) is equal to

b0(G4(s−t)+2,2) +

4t∑
i=0

b12t+3−3i(G4s+3−i,2)− b12t+2−3i(G4s+3−i,2).

As is well known, b0(G4(s−t)+2,2) = 1. We need to know for which i one has 12t+3−3i ≤ 4s+1−i.
Clearly, this is the case for i ≥ ε+ 1. Thus Lemma 2.1 implies that

N(n− 3, 3, l + 1) = 1 +
∑

0≤ even i≤ε

(−1)i +
∑

ε+1≤ non-negative odd i≤4t

(+1)i;

the right-hand side is equal to 1 + (−1)(3t − s + 1) + (+1)(s − t) = 2s − 4t = δ (which is ≥ 2) if
ε ≥ 0, and is equal to 1 + 2t if ε < 0. This proves the claim for j = 2, x = 1.

All the remaining cases are done similarly. The proof of Theorem 2.2 is finished. �

Remark 3. From Table 1, one readily sees precisely when N(n − 3, 3, l + 1) = bl+1(Gn,3) −
bl(Gn,3) = p(n− 3, 3, l + 1)− p(n− 3, 3, l) vanishes. To verify more easily that Bundy and Hart’s
[3: Theorem 3.1(b)] (answering the question of when p(n − 3, 3, l + 1) = p(n − 3, 3, l) and, from

the topological viewpoint, also determining all those numbers i+ 1 ≤ min{charrank(γ̃n,3), 3(n−3)2 }
such that Hi+1(G̃n,3) = 0) is immediately obtained from our Theorem 2.2, we put n− 3 = q. One
readily checks that we have N(q, 3, l + 1) = 0 precisely in the following cases:
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(1) j = 0 and t = 0 (these are the obvious cases of b1(Gn,3)− b0(Gn,3) = 1− 1 = 0);

(2) j = 0, x = 1, δ = 0, ε ≥ 1; this means that q = 8t+ 1 (t ≥ 1), l = 3q−3
2 ;

(3) j = 0, x = 2, δ = 0, ε ≥ 1; this means that q = 8t+ 2 (t ≥ 1), l = 3q−6
2 ;

(4) j = 2, x = 2, δ = 0, ε ≥ 0; this means that q = 8t+ 2 (t ≥ 1), l = 3q−2
2 ;

(5) j = 3, x = 3, δ = 0, ε ≥ 0; this means that q = 8t+ 3 (t ≥ 0), l = 3q−3
2 ;

(6) j = 4, x = 0, δ − 2 = 0, ε ≥ −2; this means that q = 8t+ 4 (t ≥ 0), l = 3q−4
2 ;

(7) j = 6, x = 1, δ − 2 = 0, ε ≥ −2; this means that q = 8t+ 5 (t ≥ 0), l = 3q−3
2 ;

(8) j = 6, x = 2, δ − 2 = 0, ε ≥ −2; this means that q = 8t+ 6 (t ≥ 0), l = 3q−6
2 ;

(9) j = 8, x = 2, δ − 2 = 0, ε ≥ −3; this means that q = 8t+ 6 (t ≥ 0), l = 3q−2
2 ;

(10) j = 9, x = 3, δ − 2 = 0, ε ≥ −3; this means that q = 8t+ 7 (t ≥ 0), l = 3q−3
2 ;

(11) j = 10, x = 0, δ − 4 = 0, ε ≥ −5; this means that q = 8t+ 8 (t ≥ 0), l = 3q−4
2 .

Acknowledgement. The author thanks Peter Zvengrowski for comments on a version of this
paper.
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[6] KORBAŠ, J.: The cup-length of the oriented Grassmannians vs a new bound for zero-cobordant manifolds,

Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 69–81.
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